Intelligent Monitoring and Inspection of Power Line Components Powered by UAVs and Deep Learning
Van Nhan Nguyen, Robert Jenssen, and Davide Roverso
-
PES
IEEE Members: Free
Non-members: FreePages/Slides: 11
In this paper, we present a novel automatic autonomous vision-based power line inspection system that uses unmanned aerial vehicle inspection as the main inspection method, optical images as the primary data source, and deep learning as the backbone of the data analysis. To facilitate the implementation of the system, we address three main challenges of deep learning in vision-based power line inspection: (i) the lack of training data; (ii) class imbalance; and (iii) the detection of small components and faults. First, we create four medium-sized datasets for training component detection and classification models. Furthermore, we apply a series of effective data augmentation techniques to balance out the imbalanced classes. Finally, we propose the multi-stage component detection and classification based on the Single Shot Multibox detector and deep Residual Networks to detect small components and faults. The results show that the proposed system is fast and accurate in detecting common faults on power line components, including missing top caps, cracks in poles and cross arms, woodpecker damage on poles, and rot damage on cross arms. The field tests suggest that our system has a promising role in the intelligent monitoring and inspection of power line components and as a valuable addition to smart grids.