Planned Islanding Algorithm Design Based on Multiple Sub-Microgrids With Dynamic Boundary
He Yin, Lin Zhu, Yiwei Ma, Chengwen Zhang, Yu Su, Dingrui Li, Ishita Ray, Yilu Liu, Fred Wang, and Leon M. Tolbert
-
PES
IEEE Members: Free
Non-members: FreePages/Slides: 10
Planned islanding is one of the fundamental functions of microgrid (MG) controllers. However, existing planned islanding functions cannot be directly utilized in MGs that have the capability to have both dynamic boundary and multiple sub-MGs. To optimize the smart switch operation and distributed energy resource (DER) output power, a planned islanding algorithm is designed to minimize the battery energy storage systems' power difference before and after a planned islanding. To verify the performance of the proposed algorithm, a hardware-in-the-loop (HIL) test has been conducted by implementing the algorithm in a general purpose MG controller system. The results demonstrate that the difference in active power before and after the planned islanding decreases significantly with the proposed algorithm.