Skip to main content
Webinar 11 Nov 2019

This webinar will present the 1st paper accepted for the visionary series.

Flexible Alternating Current Transmission Systems (FACTS) have achieved to enhance the flexibility of modern AC power systems, by providing fast, reliable and controllable solutions to steer the power flows and voltages in the network. The proliferation of High Voltage Direct Current (HVDC) transmission systems is leading to the opportunity of interconnecting several HVDC systems forming HVDC Supergrids. Such grids can eventually evolve to meshed systems which interconnect a number of different AC power systems and large scale offshore wind (or other renewable sources) power plants and clusters. While such heavily meshed systems can be considered futuristic and will not certainly happen in the near future, the sector is witnessing initial steps in this direction.

In order to ensure the flexibility and controllability of meshed DC grids, the shunt connected AC-DC converters can be combined with additional simple and flexible DC-DC converters which can directly control current and power through the lines. The proposed DC-DC converters can provide a range of services to the HVDC grid, including power flow control capability, ancillary services for the HVDC grid or adjacent grids, stability improvement, oscillation damping, pole balancing and voltage control. The present paper presents relevant developments from industry and academia in the direction of the development of these converters, considering technical concepts, converter functionalities and possible integration with other existing systems. The paper explores a possible vision on the development of future meshed HVDC grids and discusses the role of the proposed converters in such grids.

REGISTRATION INSTRUCTIONS:
- If you aren't already signed in, do so by clicking 'Sign In' at the top of this page
- Select the 'Add to Cart' button below
- Follow the instructions to check out
- You need to return to this page to join the live event

More Like This

  • PES
    Members: Free
    IEEE Members: $675.00
    Non-members: $1440.00
  • PES
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00