Design and Implementation of Real-Time Mpsoc FPGA Based Electromagnetic Transient Emulator of CIGR DC Grid for HIL Application

Posted:
25 Sep 2018
Authors:
Zhuoxuan Shen, Tong Duan, and Venkata Dinavahi
Page/Slide Count:
Pages: 13
Real time electromagnetic transient simulation is a powerful tool for the power system transient study and the hardware-in-the-loop (HIL) testing. Large scale DC grid can meet the flexible transmission requirements with high power efficiency and high controllability. CIGRE working group has proposed a DC grid test system, which covers various HVDC configurations and deploys modular multi-level converters (MMCs) in the grid. This work focuses on the efficient solution of the DC grid real-time emulator providing accurate and detailed results. The design and implementation of the CIGRE DC grid are carried out on a hybrid MPSoC-FPGA platform realizing the synergy between the Xilinx Vitrex UltraScale FPGA device containing a large number of logic resources and Xilinx Zynq UltraScale MPSoC device containing the ARM multi-core processing system and FPGA resources on a single chip. Hybrid modeling methodology using device-level electrothermal model, equivalent circuit model, and average value model for the converters is employed to present the detailed device-level results of local equipment and the accurate system-level results of global interactions of the DC grid. The detailed design partitioning and implementation methods are presented, and the real-time results are captured by the oscilloscope and validated with commercial simulation tools PSCAD EMTDC and SaberRD.

Recent Items