Analysis and Modeling of Eddy-Current Couplings for Auxiliary Power Generation on a Freight Train Wagon

Analysis and Modeling of Eddy-Current Couplings for Auxiliary Power Generation on a Freight Train Wagon
Posted: 24 Dec 2018
Authors:
Michael Flankl, Arda Tuysuz, Cheng Gong, Tibor Stolz, and Johann W. Kolar
Pages: 9

The subject of this paper is a non-coaxial eddy-current coupling, which can be utilized on a freight train wagon for generating auxiliary power in the range of several Watts. The coupling comprises a wheel with radially magnetized permanent magnets, which is positioned in the vicinity of the wagon's wheel, and extracts kinetic energy when the train is in motion. A computational method for solving the 3-D problem of the eddy-current coupling is presented. Maxwell's equations for calculating the excited eddy currents are solved in the Fourier domain with a semi-analytical method (SAM), resulting in computationally efficient simulations. In a case study, the SAM shows 500 times faster simulation times, compared to a 3-D transient eddy-current finite-element method simulation, carried out with a commercially available software. The SAM is verified with measurements taken on two hardware prototypes. Furthermore, in order to generalize the study, a ρη-Pareto optimization of the system is conducted for relaxed design space boundaries, an output power of P = 10 W, a C45E steel wheel with v = 80 km/h surface velocity, and g = 3 mm air gap. It is shown that a power density up to 0.8 kW/dm3 (13 W/in3) and a transfer efficiency up to 60% can be achieved using the proposed system.

Pricing:
PES Members: Free
IEEE Members: Free
Non-members: Free
Please click 'Sign In' at the top of the page and log in with your IEEE Username and password. If you do not have an IEEE account, click 'Create Account' to create a FREE account to make a purchase. Alternatively, you can join IEEE and/or become a society member which will enable access to all materials; most of which are complimentary or discounted.